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Previously on FDS

Logic functions, logic gates, and Boolean algebra y.
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Previously

= Discovered basic logic operations (AND, OR, NOT)
and their graphical representation as logic gates

= Built logic networks composed of gates,
and learned to write logic expressions (functions)
to describe the networks’ behavior

= Described logic functions using truth tables,
timing waveforms, and Venn diagrams

= Used Boolean algebra to find equivalent
logic circuit implementations
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Let's Talk About...

..Logic synthesis, the process of
designing logic circuits from their description
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Learning Outcomes A

= Apply a well-defined set of techniques Q::—"’
(PoS, SoP) to synthesize logic circuits ¥
from their truth tables or functional descriptions

= Convert an AND/OR/NQOT logic network to a NAND/NOR equivalent

» Understand the notion of a don’t care condition and use it to build
efficient circuits

= Discover and use XOR and XNOR gates
= Discover and use multiplexers (MUX)
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..using AND, OR, and NOT gates

Logic Synthesis
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Minterms

= For a function f = (x1, 22, ..., x,) Of nvariables, a product term in
which each of the n variables appears once is called a minterm

= Minterms are typically labeled as m; , where ¢« > 0 is an integer

= An n-variable minterm m; can be represented by an n-bit integer

* Variable appears complemented if the corresponding bit in the binary
representation of m; is 0;

« Otherwise, it appears uncomplemented (original)
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Minterms

Example

= Examples

n = 3,7 = 5:three variables
g (101)2 and, therefore ms = x1 To x3

EXAMPLES

n = 5,7 = 3: five variables
3 = (00011)2 and, therefore Mg = 1 9 T3 T4 Ty

CS-173, © EPFL, Spring 2025




Minterms

Example

» Find the minterms for the given truth table

= For three inputs (variables), — .

2 there are eight rows number | £1 T2 T3 Minterm
> and as many minterms 0 [0 0 0| mo=11% T
. 1 0 0 1 ™M1 = X1 g T3
2 0 1 0| mg=71 T2 T3
3 0 1 1 ms = T, Lo T3
4 T 0 0| mg=x1 7273
> T 0 1| ms=2x1 T2 X3
6 T 1 0| me=x1 T2 T3
7 1 1 1 my = 1 Ty T3
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Maxterms

= For a function f = (x1,z2, ..., x,) Of nvariables, a sum term in
which each of the n variables appears once is called a maxterm

= Maxterms are typically labeled as M; , where = > 0 is an integer

= An n-variable maxterm M; can be represented by an n-bit integer

» Variable appears complemented if the corresponding bit in the binary
representation of M, is 1;

« Otherwise, it appears uncomplemented (original)

CS-173, © EPFL, Spring 2025 11
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Maxterms

Example
= Examples:
o 11 = 3,2 = 5

« 5= (101)2 and, therefore My = =1 + x5 + T3

*n=29,1=3

« 3 =(00011)5 and, therefore M3 = x1 + 29 + x3 + T4 + T5

CS-173, © EPFL, Spring 2025
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From Max to Min terms and Vice Versa

= Max/minterms are complements of min/maxterms:
M; =mg; m; = M,
» Max/minterms from min/maxterms using De Morgan’s theorem

= Examples:

en=23,1=295

°M5ZM5:£U133_2$3:33_1—|—$2—|—33—3
ems = M5 =71 + 22+ T3 =1 Ty T3

en =2>5,1=3

« M3 ="mm3 =771 T3 T3 T4 T5 = T1 + X2 + T3 + T4 + T5
emy=Ms=x1+x9+23+7T4+Ts =71 T3 T3 Ta T

CS-173, © EPFL, Spring 2025
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Maxterms

Example

* Find minterms and maxterms for the given truth table: M, =m;

De Morgan's theorem
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Row

Aumber Tr1 o9 I3 Minterm Maxterm
0 0 0 O | my=ZT1 X223 | Moy=2x1+ 9+ 23
1 0 0 1 my=x1 o x3| M =21 +x9+ T3
2 0 1 0| me=71 2273 | Ma=1m1+7T2+ 23
3 0 1T 1| m3g=71 a2 23| M3=2x1+72+ T3
4 T 0 0| my=x12273 | Mys=77+ 22+ 23
5 T 0 1T | mg=x1T323| Ms =71 +2x2+7T3
6 1 T 0| mg=z1 2973 | Mg =71 +77T2+ 23
7 1 T T my =21 2 T3 | Mr =721+ 75 + T3

14
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Logic Synthesis with Minterms/Maxterms

= For a function f specified in the form of a truth table, a logic
expression realizing the function can be obtained by considering
 Only the rows in the table for which f =1, or
 Only the rows in the table for which f =0

= |[f considering the rows where f =1, f isrepresented by
the sum of the minterms corresponding to the rows where f = 1

= [f considering the rows where f =0, f is described by
the product of the maxterms corresponding to the rows where f = 0



Sum-of-Products (SoP) Form

Logic Synthesis with Minterms

= Reminder: If considering the rows where f = 1, f is represented
by the sum of the corresponding minterms

= The resulting logical expression is correct but not necessarily
the lowest-cost (optimal) implementation of f

= Any logical expression consisting of product (AND) terms that are
summed (OR) is said to be in the sum-of-products (SoP) form
* If each product term is a minterm: canonical sum-of-products

CS-173, © EPFL, Spring 2025
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Logic Synthesis with SoP Forms

= Consider a function f of n = 3 variables and the truth table below
= Canonical SoP form:

r1 I9 I3 f
9
EEL' f(thZax?)) :Z(m15m47m57m6) 0 0 0 0
= 0 0 1|1
:Zm(1’475’6) 0 1 010
S g— — — — 0 T T 0
f(x1,22,23) = T1 T3 23 + 21 T2 T3 + 21 T3 T3 + T1 T2 T3 10 o |1
12a. rlyte) =z yte zi= (T1 +x1) T z3 + 21 (T3 + x2) T3 1 0 111
10b. z+y=y+=x _ _
shotz=1— 1 T2 T3+ 11 73 1 1 01
[ 6(1.33-1:33\: g;_2x3_|_$133_3 1 1 1 0
10a. z-y=y-x

CS-173, © EPFL, Spring 2025 18




Logic Synthesis with SoP Forms, Contd.

= Logic synthesis from the optimized SoP form

o >
f(x17x27x3) :33_2333+QC1.T_3 }
e
= A good indication of the cost of a logic circuit is the total number

of gates and the inputs to the gates in the circuit
» For the design above, cost=5+1T+1+2+2+2=13

SN NN

Inputs Inputs Inhputs
Toralgaces  NoT  AND  OR
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Product-of-Sums (PoS) Form

Logic Synthesis with Maxterms

= Reminder: If considering the rows where f = 0, f is represented by
the product of the corresponding maxterms

= The resulting logical expression is correct but not necessarily
the lowest-cost (optimal) implementation of f

= Any logical expression consisting of sum (OR) terms that are
the factors of a product (AND) in the product-of-sums (PoS) form
* If each product term is a maxterm: canonical product-of-sums

CS-173, © EPFL, Spring 2025
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Logic Synthesis with PoS forms

= Consider a function f of n = 3 variables and the truth table below

f(w1, @0, 23) = | [ (Mo, Ma, Ms, My)

r1 I9 I3 f

=[] 24(0,2.3.7) 0 0 00
3 0 0 1|1
f($17x27m3):M0°M2'M3'M7 0 ] 0 0

= (1 + 22+ 23)(T1 + T2 + 23) (21 + T2 +23)(T1 + 22 + T3) T

= Note the expression for the complement of f T 0 0]

- T 0 1|1
f(x17w293:3):MO'MZ'Mg‘M7:M0+M2—|—M3—|—M7 ] : 0 1

[ De Morgan’s theorem }Z mo + Mo + M3 + My 1 1 1 0

0S-173,©® EPFL, Spring 2025 f=Ff=mg+m2+m3+my 21
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Logic Synthesis with PoS forms, Contd.

= _ogic synthesis from the optimized PoS form
f(z1,22,23) = My - My - M3 - My
= (:El -+ i) -+ Zl?3)($1 —|—33_2—|— $3)($1 —|-33_2—|— 5(33)(381 -+ 9 —|—ZC3)
[10b.x+y:y+x Illb.x+(y+z):(:n+y)—l—z}
— ((331 S ZE3) + 35‘2) ((331 R 512'3) —|-£U_2) (371 + (33_2—|—33_3)) (213_1—|— (392 Sis 32'3))
[146. (z+y)(x+7) ==z CombiningI 10b. z+y=y+=x }

= (z1 + x3) (72 + 73)

L1
mCost=5+1T+1T+2+2+2=13
AV AV | Ty >
IDDUtS InDU‘tS Inpwcs
Towlgates  WoT OR AND vy
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Which One is “Better?” PoS or SoP?

= |n general, will PoS and SoP forms give us equally efficient
(in terms of cost) logic circuit implementation?
Should we prefer one form over another?

= A: Generally, the costs of networks derived from the SoP and PoS
forms do not have to be equal.
* One should derive both and select the one that has a lower cost
« One form may require fewer gates or fewer levels of logic (lower delay)

CS-173, © EPFL, Spring 2025 23
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NAND and NOR Logic Networks
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Logic Synthesis with NAND and NOR

= NAND and NOR gates can be used to build logic circuits

1 —

Lo —

Dy

o A )

f(3717$2) = T1 -T2

X1
)

1>

T1 + T2

f(5171>392) =21+ T2

« NAND/NOR physical implementation is simpler (requires fewer
transistors) and more efficient than AND/OR

« AND/OR are implemented as NAND/NOR + NOT

= How to build logic circuits with NAND and NOR gates?



De Morgan’s Theorem

Applied to NAND and NOR

L1 —
L1 — - 1 - )
L1 -T2 T1 -T2 =
o — To
Lo —

T1,T2) = X1 - & — T1 T5 =T1 4+ 15 NAND = OR with
f( ' 2) b f(:l?1,332) T1r¥2 =Tt Ty both inputs inverted

D

flz1,20) =21 + 22 =71 T2 NOR = AND with
both inputs inverted

S
=
_l_

X
no
I
S =
=

_|_

X

\V]

I
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NOT Gate Using NAND or NOR

= According to Boolean theorems: | 7a. -z =2
« T=7-x (NAND) and hortr=ua
x + x (NOR)

I
8

Yy o= ) e

NOT = NAND with NOT = NOR with
both inputs equal both inputs equal

CS-173, © EPFL, Spring 2025
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Logic Network with NAND Gates

= Implement the following function in the SoP form with NAND
J =2+ 2173

= Algorithm: start by applying double inversion and, then,
De Morgan’s theorem to simplity the expression

EXAMPLES

__ u
f=x94+ 2173 L2 |

— f
= T2 + T17X3 T }r}
De = —
-7 o o

CS-173, © EPFL, Spring 2025




(7]
i
—
o
=
<
x
]

Logic Network with NOR Gates

= Implement the following function in the PoS form with NOR
f=(z1+ 22)(z2 + T3)

= Algorithm: start by applying double inversion and, then,
De Morgan’s theorem to simplity the expression

f = (21 + x2)(x2 + Ts3) &

= (1 + x2) (22 + Z3) 2

= (5171 +ZCQ)+(£C2 —|—SU_3)

CS-173, © EPFL, Spring 2025
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Incompletely Defined Functions

.. And Don't Cares
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= .

- h@\
.=l

J . {=] EQ
. jﬁ};
St
e



Incompletely Defined Functions

= _are Boolean functions where some input combinations are
not specified because they don't matter (e.g., they never occur),
so the function does not need to define outputs for them
« Those input combinations are called don't care conditions

= |[n logic optimization, don't care conditions can be assigned
function value (output) either 0 or 1, to simplify the logic circuit
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Don’t Care Conditions

Example: Lion’s Cage Door Control

» [magine a lion’s cage with an automated door control system
including two sensors and a manual override switch

" |[nputs
« Sensor L: Detects if the lion is inside (1 = inside; 0 = outside)
« Sensor T: Detects if the trainer is inside (1 = inside; 0 = outside)

 Override switch (S): The trainer can manually force the door open or
closed irrespective of presence (1 = override enabled; 0 = normal mode)

» Qutputs
 Door control (D): 1 = open (unlocked); 0 = closed (locked)

CS-173, © EPFL, Spring 2025

34



Don’t Care Conditions

Example: Lion’s Cage Door Control

= Truth table
Lion Trainer Override Door (D)
o inside (L) inside (T) switch (S)
%' 0 0 0 0 (door closed, nobody inside) |
n 0 1 0 1 (door open, trainer inside) o
L — Door open when trainer inside

1 0 0 0 (door closed, lion inside)

1 1 0 1 (door open, trainer inside) |

X X T 1 or 0 (Don't care)

Override forces door open or closed

= When Sis 1, inputs L and T do not matter (don't care, X)

CS-173, © EPFL, Spring 2025 35




Don’t Care Conditions

Example: Lion’s Cage Door Control

= Inefficient logic implementation (unoptimized)

Lion Trainer Override Door (D)
o inside (L) inside (T) switch (S) ’ .
E 0 0 0 0 (door closed, nobody inside) d i =
< L 6b. r+0==x
f 0 T 0 1 (door open, trainer inside) ~
- 8a. x-x =20
1 0 0 0 (door closed, lion inside) -
L 8. r+xr =1
1 1 0 1 (door open, trainer inside)
0 0 1 1 (for example) l .
0 1 1 0 (for example) D=LTS+LTS+LTS
1 0 1 0 (for example) —T S s LTS
1 1 1 0 (for example) Cost = 6 gates + 10 inputs = 16

3xNOT, 2-input AND, 3-input AND, 2-input OR
CS-173, © EPFL, Spring 2025 36




Don’t Care Conditions

Example: Lion’s Cage Door Control

= More efficient logic implementation
Lion Trainer Override Door (D)
o inside (L) inside (T) switch (S)
%' 0 0 0 0 (door closed, nobody inside)
n 0 T 0 1 (door open, trainer inside)
1 0 0 0 (door closed, lion inside)
1 T 0 1 (door open, trainer inside) Don’t cares help
0 0 1 1 (for examp/e) Optimize the CirCuit
0 1 1 1 (for example) D=T4+5
! 0 ! 1 (for example) Cost =1 gate + 2 inputs =3
1 1 1 1 (for example)

CS-173, © EPFL, Spring 2025
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Even and Odd Detectors

XOR and XNOR gates
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Exclusive OR Operation (XOR)

= Consider the truth table below = Logic function derived from
the truth table:

X1 i) f

0 0| 0 f=71 22+ 21 T2

0 1 |1 | .

ol = We call it Exclusive OR (also
110 an odd function) and write @

. J =71 22 +x1 To = 71 D T2
= The output is set when

the inputs are of the opposite 2y )
polarity (odd detector) 2 7Df




Coincidence Operation (XNOR)

= Another common operation = |_ogic function derived from
s the complement of XOR the truth table:
1 To f f — 33_133_2_'_391332
8 ? (1) = We call it XNOR or coincidence
ool operation and write ®
T T 1 J =71 Ta + 2100 = 21 O 9
= The output is set when 21—\
the inputs are of the same 2 7Df

polarity (even detector) FE———
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Design Examples

Number display
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Number Display

Multiple-Output Circuit

» Design a logic circuit to drive a seven-segment display
» The display shows value (si.50)2 as a decimal number

EXAMPLES

a a
b
S0 . C fI I b
Logic d —
circuit e
i
g

CS-173, © EPFL, Spring 2025
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Number Display

QO OS2

S
Multiple-Output Circuit ’ Logic
circuit
S1
» The display shows value (si.50)2 as a decimal number

Corresponding truth table

a a a a

L | ] | 81Soabcdefg

4 I OO NI O

elglceglc eIQHCQQIC ) 5 100110000

e — o — 10017101 1 0 1
111171110 0 1

CS-173, © EPFL, Spring 2025
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Number Display, Contd.

Multiple-Output Circuit

= From the truth table below, derive one logic function per output
« One can use minterms or maxterms, whichever appears more efficient

i a(sp,s1) = My = s1 + 3¢
S S1 Sola b ¢ d e f g
N b(So,Sl):l
5 0 01 111110
0 1/0 1 1 0 0 0 O c(s0,51) = Mz =351 + S
oo 110 d(s0,81) = M1 = 51 + 30 = a(so, 51)
T 17117 1T 1T 1T 0 0 1 _
e(so,81) = My - M3 = mg + mo =371 Sp + 5150 = So
~— f(s0,81) = mo =31 So
9(s0,51) = Mo - M1 =ma +m3z = 51 50 + 5150 = S1

CS-173, © EPFL, Spring 2025 45




EXAMPLES

Number Display, Contd.

Multiple-Output Circuit

= Draw the corresponding logic network

80%%

CS-173, © EPFL, Spring 2025
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Design Examples

Multiplexer
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Data Selector (Multiplexer or MUX)

= |t is often helpful to choose precisely one from several inputs

= A circuit performing data selection (a multiplexer) has one
or more select inputs dedicated to determining which of
the remaining inputs to pass to the output

= For example, a three-input multiplexer (also called 2-to-1 MUX):

 [nputs
« One selection signal s
e Two data inputs 1 and X2

« When the selection signal is s = 0, the output becomes f = x4
 Otherwise, the output becomes f = x5

CS-173, © EPFL, Spring 2025 49
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2-to-1 Multiplexer (MUX)

Logic Circuit and the Graphical Symbol

S Tr1 X9 f
0 0 010
o 0 0 110
Lo o
o 1 1]
"1 0 010
— 1011
« 1100
L N

CS-173, © EPFL, Spring 2025

f(s,x1,22) =35 x1%T2 + S 12 + ST1 To + ST1T2

f(s,x1,29) =521 (T2 + x2) + s(T1 + 1) T2
=Sr1-1+s-1-x9

= SXT1 + ST

T } Multiplexer
T~
A | > = T Ly
S I1—0
X9 D /Sr

50
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2-to-1 Multiplexer (MUX)

Logic Circuit and the Graphical Symbol

f(s,1,22) =311 + S22

Multiplexer
\
Lo—1
S

CS-173, © EPFL, Spring 2025
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/:f — I
:231_/0

s=20

\
372—\1

\:f — X2
I1—0

s=1
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How Many Select Signals a MUX Has?

= |f there are n data inputs to select from, how many select signals
MUX requires?

= A: [logyn |

Two data inputs: one select signal (12 combinations)

Four data inputs: two select signals (22 combinations)

Eight data inputs: three select signals (23 combinations)

12 data inputs: four select signals because three are not sufficient
2v~1 < data inputs < 2"k select signals will be required

CS-173, © EPFL, Spring 2025
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Literature

DIGITAL LOGIC

with Verilog Design

= Chapter 2: Introduction to Logic Circuits
= 2.1-25

CS-173, © EPFL, Spring 2025

Chapter 1: Introduction

= 19
Chapter 7: More Combinational
Building Blocks

= 7
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