
Digital Logic Circuits
Logic Synthesis

CS-173 Fundamentals of Digital Systems

Mirjana Stojilović

Spring 2025

https://mirjanastojilovic.github.io/cs173/index.html

Previously on FDS
Logic functions, logic gates, and Boolean algebra

2CS-173, © EPFL, Spring 2025
© TechSolution / Adobe Stock

3

Previously

▪ Discovered basic logic operations (AND, OR, NOT)
and their graphical representation as logic gates

▪ Built logic networks composed of gates,
and learned to write logic expressions (functions)
to describe the networks’ behavior

▪ Described logic functions using truth tables,
timing waveforms, and Venn diagrams

▪ Used Boolean algebra to find equivalent
logic circuit implementations

CS-173, © EPFL, Spring 2025

Let’s Talk About…
…Logic synthesis, the process of
designing logic circuits from their description

4CS-173, © EPFL, Spring 2025
© TechSolution / Adobe Stock

5

Learning Outcomes

▪ Apply a well-defined set of techniques
(PoS, SoP) to synthesize logic circuits
from their truth tables or functional descriptions

▪ Convert an AND/OR/NOT logic network to a NAND/NOR equivalent

▪ Understand the notion of a don’t care condition and use it to build
efficient circuits

▪ Discover and use XOR and XNOR gates

▪ Discover and use multiplexers (MUX)

CS-173, © EPFL, Spring 2025

Quick Outline

▪ Logic synthesis
• Minterms

• Maxterms

• Sum-of-products (SoP)

• Product-of-sums (PoS)

• Logic synthesis

▪ NAND and NOR networks

▪ Incompletely defined functions
• Don’t care conditions

6CS-173, © EPFL, Spring 2025

▪ Even and odd detectors
• XOR

• XNOR

▪ Design examples
• Number display

• MUX

© TechSolution / Adobe Stock

Logic Synthesis
…using AND, OR, and NOT gates

7CS-173, © EPFL, Spring 2025

8

Minterms

▪ For a function of variables, a product term in
which each of the variables appears once is called a minterm

▪ Minterms are typically labeled as , where is an integer

▪ An -variable minterm can be represented by an -bit integer
• Variable appears complemented if the corresponding bit in the binary

representation of is 0;

• Otherwise, it appears uncomplemented (original)

CS-173, © EPFL, Spring 2025

E
X

A
M

P
L

E
S

9

Minterms
Example

▪ Examples
• : three variables

• and, therefore

• : five variables
• and, therefore

CS-173, © EPFL, Spring 2025

E
X

A
M

P
L

E
S

10

Minterms
Example

▪ Find the minterms for the given truth table

▪ For three inputs (variables),
there are eight rows
and as many minterms

CS-173, © EPFL, Spring 2025

Row
number

Minterm

0 0 0 0

1 0 0 1

2 0 1 0

3 0 1 1

4 1 0 0

5 1 0 1

6 1 1 0

7 1 1 1

11

Maxterms

▪ For a function of variables, a sum term in
which each of the variables appears once is called a maxterm

▪ Maxterms are typically labeled as , where is an integer

▪ An -variable maxterm can be represented by an -bit integer
• Variable appears complemented if the corresponding bit in the binary

representation of is 1;

• Otherwise, it appears uncomplemented (original)

CS-173, © EPFL, Spring 2025

E
X

A
M

P
L

E
S

12

Maxterms
Example

▪ Examples:
•

• and, therefore

•

• and, therefore

CS-173, © EPFL, Spring 2025

13

From Max to Min terms and Vice Versa

▪ Max/minterms are complements of min/maxterms:

▪ Max/minterms from min/maxterms using

▪ Examples:
•

•

•

•

•

•

CS-173, © EPFL, Spring 2025

De Morgan’s theorem

E
X

A
M

P
L

E
S

14

Maxterms
Example

▪ Find minterms and maxterms for the given truth table:

CS-173, © EPFL, Spring 2025

Row
number

Minterm Maxterm

0 0 0 0

1 0 0 1

2 0 1 0

3 0 1 1

4 1 0 0

5 1 0 1

6 1 1 0

7 1 1 1

De Morgan’s theorem

CS-173, © EPFL, Spring 2025 15

16

Logic Synthesis with Minterms/Maxterms

▪ For a function specified in the form of a truth table, a logic
expression realizing the function can be obtained by considering
• Only the rows in the table for which , or

• Only the rows in the table for which

▪ If considering the rows where , is represented by
the sum of the minterms corresponding to the rows where

▪ If considering the rows where , is described by
the product of the maxterms corresponding to the rows where

CS-173, © EPFL, Spring 2025

17

Sum-of-Products (SoP) Form
Logic Synthesis with Minterms

▪ Reminder: If considering the rows where , is represented
by the sum of the corresponding minterms

▪ The resulting logical expression is correct but not necessarily
the lowest-cost (optimal) implementation of

▪ Any logical expression consisting of product (AND) terms that are
summed (OR) is said to be in the sum-of-products (SoP) form
• If each product term is a minterm: canonical sum-of-products

CS-173, © EPFL, Spring 2025

E
X

A
M

P
L

E
S

18

Logic Synthesis with SoP Forms

▪ Consider a function of variables and the truth table below

▪ Canonical SoP form:

CS-173, © EPFL, Spring 2025

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

E
X

A
M

P
L

E
S

19

Logic Synthesis with SoP Forms, Contd.

▪ Logic synthesis from the optimized SoP form

▪ A good indication of the cost of a logic circuit is the total number
of gates and the inputs to the gates in the circuit
• For the design above, cost = 5 + 1 + 1 + 2 + 2 + 2 = 13

CS-173, © EPFL, Spring 2025

Total gates Inputs
NOT

Inputs
AND

Inputs
OR

20

Product-of-Sums (PoS) Form
Logic Synthesis with Maxterms

▪ Reminder: If considering the rows where , is represented by
the product of the corresponding maxterms

▪ The resulting logical expression is correct but not necessarily
the lowest-cost (optimal) implementation of

▪ Any logical expression consisting of sum (OR) terms that are
the factors of a product (AND) in the product-of-sums (PoS) form
• If each product term is a maxterm: canonical product-of-sums

CS-173, © EPFL, Spring 2025

E
X

A
M

P
L

E
S

21

Logic Synthesis with PoS forms

▪ Consider a function of variables and the truth table below

▪ Note the expression for the complement of

CS-173, © EPFL, Spring 2025

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0De Morgan’s theorem

E
X

A
M

P
L

E
S

▪ Logic synthesis from the optimized PoS form

▪ Cost = 5 + 1 + 1 + 2 + 2 + 2 = 13

22

Logic Synthesis with PoS forms, Contd.

CS-173, © EPFL, Spring 2025

Total gates Inputs
NOT

Inputs
OR

Inputs
AND

Combining

23

Which One is “Better?” PoS or SoP?

▪ In general, will PoS and SoP forms give us equally efficient
(in terms of cost) logic circuit implementation?
Should we prefer one form over another?

▪ A: Generally, the costs of networks derived from the SoP and PoS
forms do not have to be equal.
• One should derive both and select the one that has a lower cost

• One form may require fewer gates or fewer levels of logic (lower delay)

CS-173, © EPFL, Spring 2025

CS-173, © EPFL, Spring 2025 24

NAND and NOR Logic Networks

25CS-173, © EPFL, Spring 2025

26

Logic Synthesis with NAND and NOR

▪ NAND and NOR gates can be used to build logic circuits

• NAND/NOR physical implementation is simpler (requires fewer
transistors) and more efficient than AND/OR

• AND/OR are implemented as NAND/NOR + NOT

▪ How to build logic circuits with NAND and NOR gates?

CS-173, © EPFL, Spring 2025

27

De Morgan’s Theorem
Applied to NAND and NOR

CS-173, © EPFL, Spring 2025

NAND = OR with
both inputs inverted

NOR = AND with
both inputs inverted

28

NOT Gate Using NAND or NOR

▪ According to Boolean theorems:
• (NAND) and

• (NOR)

CS-173, © EPFL, Spring 2025

NOT = NAND with
both inputs equal

NOT = NOR with
both inputs equal

E
X

A
M

P
L

E
S

29

Logic Network with NAND Gates

▪ Implement the following function in the SoP form with NAND

▪ Algorithm: start by applying double inversion and, then,
De Morgan’s theorem to simplify the expression

CS-173, © EPFL, Spring 2025

De
Morgan’s

E
X

A
M

P
L

E
S

30

Logic Network with NOR Gates

▪ Implement the following function in the PoS form with NOR

▪ Algorithm: start by applying double inversion and, then,
De Morgan’s theorem to simplify the expression

CS-173, © EPFL, Spring 2025

De
Morgan’s

CS-173, © EPFL, Spring 2025 31

Incompletely Defined Functions
… And Don’t Cares

32CS-173, © EPFL, Spring 2025

33

Incompletely Defined Functions

▪ …are Boolean functions where some input combinations are
not specified because they don’t matter (e.g., they never occur),
so the function does not need to define outputs for them
• Those input combinations are called don’t care conditions

▪ In logic optimization, don’t care conditions can be assigned
function value (output) either 0 or 1, to simplify the logic circuit

CS-173, © EPFL, Spring 2025

E
X

A
M

P
L

E
S

34

Don’t Care Conditions
Example: Lion’s Cage Door Control

▪ Imagine a lion’s cage with an automated door control system
including two sensors and a manual override switch

▪ Inputs
• Sensor L: Detects if the lion is inside (1 = inside; 0 = outside)

• Sensor T: Detects if the trainer is inside (1 = inside; 0 = outside)

• Override switch (S): The trainer can manually force the door open or
closed irrespective of presence (1 = override enabled; 0 = normal mode)

▪ Outputs
• Door control (D): 1 = open (unlocked); 0 = closed (locked)

CS-173, © EPFL, Spring 2025

E
X

A
M

P
L

E
S

35

Don’t Care Conditions
Example: Lion’s Cage Door Control

▪ Truth table

▪ When S is 1, inputs L and T do not matter (don’t care, X)

CS-173, © EPFL, Spring 2025

Lion
inside (L)

Trainer
inside (T)

Override
switch (S)

Door (D)

0 0 0 0 (door closed, nobody inside)

0 1 0 1 (door open, trainer inside)

1 0 0 0 (door closed, lion inside)

1 1 0 1 (door open, trainer inside)

X X 1 1 or 0 (Don’t care)
Override forces door open or closed

Door open when trainer inside

E
X

A
M

P
L

E
S

36

Don’t Care Conditions
Example: Lion’s Cage Door Control

▪ Inefficient logic implementation (unoptimized)

CS-173, © EPFL, Spring 2025

Lion
inside (L)

Trainer
inside (T)

Override
switch (S)

Door (D)

0 0 0 0 (door closed, nobody inside)

0 1 0 1 (door open, trainer inside)

1 0 0 0 (door closed, lion inside)

1 1 0 1 (door open, trainer inside)

0 0 1 1 (for example)

0 1 1 0 (for example)

1 0 1 0 (for example)

1 1 1 0 (for example) Cost = 6 gates + 10 inputs = 16
3×NOT, 2-input AND, 3-input AND, 2-input OR

E
X

A
M

P
L

E
S

37

Don’t Care Conditions
Example: Lion’s Cage Door Control

▪ More efficient logic implementation

CS-173, © EPFL, Spring 2025

Lion
inside (L)

Trainer
inside (T)

Override
switch (S)

Door (D)

0 0 0 0 (door closed, nobody inside)

0 1 0 1 (door open, trainer inside)

1 0 0 0 (door closed, lion inside)

1 1 0 1 (door open, trainer inside)

0 0 1 1 (for example)

0 1 1 1 (for example)

1 0 1 1 (for example)

1 1 1 1 (for example)
Cost = 1 gate + 2 inputs = 3

Don’t cares help
optimize the circuit

CS-173, © EPFL, Spring 2025 38

Even and Odd Detectors
XOR and XNOR gates

39CS-173, © EPFL, Spring 2025

Exclusive OR Operation (XOR)

▪ Consider the truth table below

▪ The output is set when
the inputs are of the opposite
polarity (odd detector)

40CS-173, © EPFL, Spring 2025

0 0 0

0 1 1

1 0 1

1 1 0

▪ Logic function derived from
the truth table:

▪ We call it Exclusive OR (also
an odd function) and write

Coincidence Operation (XNOR)

▪ Another common operation
is the complement of XOR

▪ The output is set when
the inputs are of the same
polarity (even detector)

▪ Logic function derived from
the truth table:

▪ We call it XNOR or coincidence
operation and write

41CS-173, © EPFL, Spring 2025

0 0 1

0 1 0

1 0 0

1 1 1

Design Examples
Number display

42CS-173, © EPFL, Spring 2025

E
X

A
M

P
L

E
S

43

Number Display
Multiple-Output Circuit

▪ Design a logic circuit to drive a seven-segment display

▪ The display shows value as a decimal number

CS-173, © EPFL, Spring 2025

Logic
circuit

E
X

A
M

P
L

E
S

44

Number Display
Multiple-Output Circuit

▪ The display shows value as a decimal number

CS-173, © EPFL, Spring 2025

Logic
circuit

0 0 1 1 1 1 1 1 0

0 1 0 1 1 0 0 0 0

1 0 1 1 0 1 1 0 1

1 1 1 1 1 1 0 0 1

Corresponding truth table

E
X

A
M

P
L

E
S

45

Number Display, Contd.
Multiple-Output Circuit

▪ From the truth table below, derive one logic function per output
• One can use minterms or maxterms, whichever appears more efficient

CS-173, © EPFL, Spring 2025

0 0 1 1 1 1 1 1 0

0 1 0 1 1 0 0 0 0

1 0 1 1 0 1 1 0 1

1 1 1 1 1 1 0 0 1

E
X

A
M

P
L

E
S

46

Number Display, Contd.
Multiple-Output Circuit

▪ Draw the corresponding logic network

CS-173, © EPFL, Spring 2025

CS-173, © EPFL, Spring 2025 47

Design Examples
Multiplexer

48CS-173, © EPFL, Spring 2025

49

Data Selector (Multiplexer or MUX)

▪ It is often helpful to choose precisely one from several inputs

▪ A circuit performing data selection (a multiplexer) has one
or more select inputs dedicated to determining which of
the remaining inputs to pass to the output

▪ For example, a three-input multiplexer (also called 2-to-1 MUX):
• Inputs

• One selection signal

• Two data inputs and

• When the selection signal is , the output becomes

• Otherwise, the output becomes

CS-173, © EPFL, Spring 2025

E
X

A
M

P
L

E
S

50

2-to-1 Multiplexer (MUX)
Logic Circuit and the Graphical Symbol

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

CS-173, © EPFL, Spring 2025

Multiplexer

E
X

A
M

P
L

E
S

51

2-to-1 Multiplexer (MUX)
Logic Circuit and the Graphical Symbol

CS-173, © EPFL, Spring 2025

Multiplexer

52

How Many Select Signals a MUX Has?

▪ If there are data inputs to select from, how many select signals
MUX requires?

▪ A:
• Two data inputs: one select signal (12 combinations)

• Four data inputs: two select signals (22 combinations)

• Eight data inputs: three select signals (23 combinations)

• 12 data inputs: four select signals because three are not sufficient

• , select signals will be required

CS-173, © EPFL, Spring 2025

CS-173, © EPFL, Spring 2025 53

54

Literature

CS-173, © EPFL, Spring 2025

▪ Chapter 2: Introduction to Logic Circuits
▪ 2.1-2.5

▪ Chapter 1: Introduction
▪ 1.9

▪ Chapter 7: More Combinational
Building Blocks
▪ 7.1

